

Process Industry Automation

Fast-growing market with structural tailwinds and investment opportunities

November 2025

Table of Contents

- Executive summary
- View on automation for industrial applications: segments & end markets
- Impact of megatrends and new technologies
- Spotlight on new process industry automation applications:
 - Increasing use and accuracy of 'digital twins'
 - Distributed automation in process industries
- Profitability and value drivers of key market participants
- M&A trends in the process industry automation market

The global process industry automation market is expected to see strong growth, reaching c.\$160B by 2030 driven by technological innovation and megatrends including regulation, Al and cybersecurity

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Market is expected to grow attractively, driven by emerging applications including Al

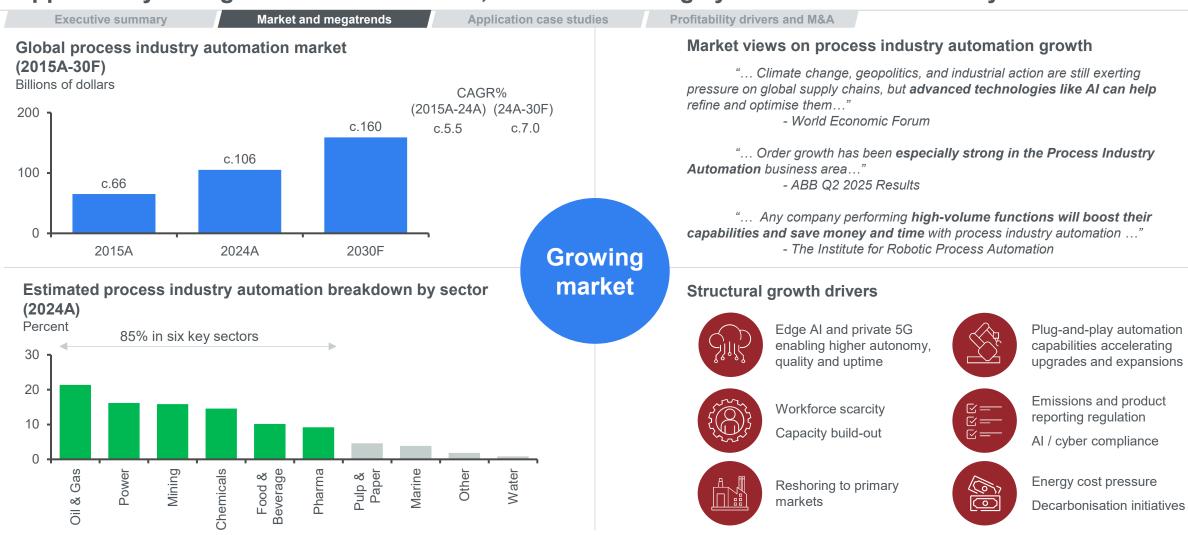
- The global process industry automation market grew from c.\$66B (2015A) to c.\$106B (2024A) and is forecast to reach c.\$160B by 2030. Most of the market (c.85%) is concentrated in six sectors: oil & gas, power, mining, chemicals, food & beverage and pharmaceuticals
- Market growth is underpinned by stricter regulation (including the EU AI Act) and stricter sustainability reporting rules, as well as a technology push (edge AI, private 5G, open control architectures), which together expand spend on data capture, analytics and compliant reporting
- Technological innovations such as digital twins and physics-informed models are accelerating commissioning and elevating predictive maintenance

Process industry automation is being impacted by several favourable megatrends

- The regulatory bar is rising, forcing continuous measurement, reporting and control across plants (e.g., EU CSRD requiring ESRS reporting, EU Methane Regulation mandating MRV and LDAR)
- Al is now embedded at every layer of the technology stack, with private 5G enabling real-time feedback loops and open, modular architecture making multi-vendor upgrades practical; wider adoption of digital twin models and distributed automation architectures
- Workforce shortages and increasing regionalisation are accelerating automation and platform standardisation

Growth is fuelled by emerging applications in the field

- New smart applications, such as AI-enabled optimisation, predictive maintenance, emissions management, and cyber threat detection, are fuelling growth in the process industry automation market
- Use of digital twins to virtually model the impact of scenarios and operational changes before occurrence reduces downtime, improves yields and derisks CapEx
- Distributed automation (implementing modular, edge-based architecture) shifts control closer to the process, improving decision speed, flexibility, scalability and resilience


Profitability and revenue of key players remains favourable

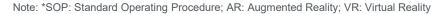
- IP-rich Al and machine learning-based services enable leading players to defend market positions and capture recurring aftermarket growth as process industry automation remains a top technology investment priority for a majority of manufacturers
- Demand is shifting towards comprehensive and globally-deployed intelligent automation solutions, making providers integral to operations within customer value chains
- 650+ M&A deals in the past 4 years signal continued consolidation, as strategics focus on filling technology gaps in AI, predictive analytics and IIoT

Note: *CSRD: Corporate Sustainability Reporting Standards; ESRS: European Sustainability Reporting Standards; MRV: Monitoring, Reporting and Verification; LDAR: Leak Detection and Repair Source: L.E.K. research and analysis

The global process industry automation market is expected to continue seeing strong growth supported by a range of structural drivers; the market is largely focused around six key sectors

Source: L.E.K. research and analysis; Markets and Markets

Process industries are being impacted by overarching megatrends which create a range of opportunities and challenges for businesses


Market and megatrends **Application case studies** Profitability drivers and M&A **Executive summary** Relevant megatrends Impact on process industries Deploy modular process units for rapid setup and relocation across regions Geopolitical tensions and economic **Geopolitics &** regionalised nationalism are reshaping supply Build regionalised value chains with digital twins for sourcing, logistics and compliance traceability strategies and production footprints supply chains Use Al-powered scheduling and supply risk engines to dynamically balance loads/respond to disruption Enabling human-machine Rely on more remote/automated monitoring and Al assistants to stretch teams Al-driven process collaboration across operations and & workforce Capture expert know-how with digital SOPs*, AR/ VR* and analytics applying AI to optimise production, transformation Integration of Al and digital twin systems to simulate, forecast and optimise process operations maintenance and decision-making Shift from traditional, hierarchical Enable modular operations by deploying process units faster through plug-and-produce architectures Decentralised automation architectures (central Distribute control logic to the edge for faster, more autonomous and resilient process optimisation control systems DCS and SCADA) towards modular Reduce single-point failures through segmented control domains and secure-by-design architectures and decentralised control Rising safety standards (such as IEC Find hazards and set the right protection level for each safety function 61511, ISA 84) are driving adoption **Health & safety** Auto-schedule and record proof tests; control and log any overrides of real-time monitoring and Al-based Run online checks to catch hidden faults early hazard detection Regulators and customers demand Provide continuous emissions proof through always-on measurement and automated reporting Decarbonisation active decarbonisation (e.g., Optimise energy and electrify heat to cut CO₂ and fuel use & energy electrification) and transparent efficiency Embed product-level carbon accounting to evidence footprints across the supply chain emissions accounting

Cybersecurity, resilience & compliance

Protecting increasingly connected and autonomous operations and ensuring system integrity

Ensure **cyber-physical system (CPS) protection** and OT network hardening Comply with data sovereignty and **digital trust frameworks**

These megatrends are enabled by advances in digital technologies and are resulting in several emerging process industry automation applications

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

	Megatrends						
Process Industry Automation Applications	Geopolitics & regionalised supply chains	Al-driven process & workforce transformation	Decentralised control systems	Health & safety	Decarbonisation & energy efficiency	Cybersecurity, resilience & compliance	Comment
Decentralised, modular production set-up							Enabling rapid setup and relocation across regions
Al-powered scheduling							Dynamically balance loads/respond to disruption
Al-augmented workforce assistants							Embedded assistants that guide decision-making, surface anomalies and reduce cognitive load
Digital twin process optimisation							Digital twin models for real-time resilience testing and scenario planning
Condition-based/predictive maintenance							Leveraging sensor data and analytics to optimise when to service or replace an asset
Smart production processes (incl. distributed automation)							Modular, resilient control enabling faster decisions, easier scaling and reduced downtime
Al-powered health & safety automated systems							Predict risks and autonomously prevent incidents by using AI, computer vision and IoT sensors
Advanced instrumentation and monitoring							Using sensors and software for critical process monitoring and control applications
Product-level carbon accounting/analytics							Carbon footprint evidence across the supply chain
Threat detection and incident response							Identify cyber and operational threats early, automate responses, and strengthen resilience

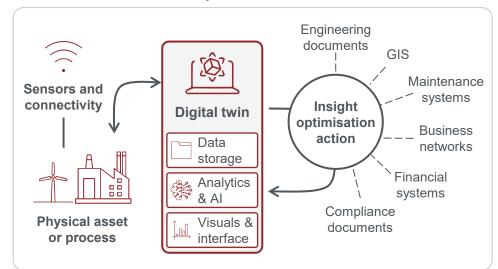
Key:Main megatrend driving each process industry automation application

Deep dive on following slides

Digital twins are real-time virtual simulations of physical systems that integrate physics-based and Al models to predict performance and optimise process operations

Executive summary

Market and megatrends


Application case studies

Profitability drivers and M&A

Digital twins

What are digital twins?

A digital twin is a **virtual replica** of a physical system (such as an asset, process or full factory) that combines **physics-based and Al / machine learning models** alongside IoT connectivity with **live feed of data** from sensors, MES/SCADA and ERP systems to enable **real-time simulation**

Digital twins enable operators to test risk-free and **optimise performance before making real-world changes**, prioritise **maintenance schedules**, support **regulatory compliance**, and form digital control loops for **automated adjustments**

Key benefits of digital twins

Cost savings

Optimise energy efficiency & operating costs

De-risk capital projects

Output speed and quality

Regulatory compliance

Accelerate process design & scale-up

Ensure regulatory compliance & ESG reporting

Enhance workforce training

<u>Case study</u>: Chemical product manufacturer deployed a digital twin to optimise its energy-intensive spray drying process, achieving double-digit efficiency gains and a ROI within 12 months

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Digital twins

Background

- Chemical product manufacturer had a spray drying process that was energy intensive and difficult to optimise
- Spray drying is traditionally run conservatively to avoid off-spec product, but this leads to significant water energy and lower throughput, amounting to hundreds of thousands of dollars per dryer annually
- The producer needed a way to improve dryer performance without compromising product quality or requiring expensive new equipment

Digital twin implementation

- The producer developed a digital twin to continuously ingest sensor and control data from the plant to simulate the live drying operation
- Al algorithms predict optimal process parameters (e.g. inlet temperature, airflow, feed rate) and either suggest adjustments to operators or automatically implement them in 'closed-loop' mode
- Operators interact with a unified dashboard showing live key performance indicators (e.g. moisture content, energy use)

Impacts

Growth in digital twin applications creates multiple potential investment pathways focused around specific technology areas and scalable business models

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Digital twins

How companies can invest behind the theme of digital twins

Strong market outlook driven by Al adoption

- The global digital twin market* is set to rise from ~\$21B (2025) to ~\$150B (2030), with a 45% 50% CAGR
- Healthcare and manufacturing segments lead adoption, with **North America showing strongest growth** driven by tech innovation and investment

Attractive digital twin capabilities combine scale, resilience and recurring value

- Core digital twin enablers such as **simulation engines** and **vertical twin SaaS platforms** provide domain-specific value, resilient ARR and strong customer lock-in
- Connected **IoT devices and edge computing platforms** form the foundation for real-time analytics, scalable automation, and the seamless use of Al and extended reality technologies across process industries

Attractive businesses show scalable, evidence-backed, cloudnative models

- Solutions are cloud-native and modular through open APIs
- Proprietary data models or IP ownership, while discounting legacy, services-heavy or on-premise offerings that limit scalability
- Evidence of OEE or CapEx savings

Ability to embed digital twin within processes is critical

- Embed the digital twin engine within the automation platform to drive cross-sell, expand ARR and strengthen customer retention
- Integrate the twin as a core layer across OT and IT systems to enable rapid deployment and scalable performance improvement

Distributed automation pushes decision logic and control to edge nodes across plant infrastructure, enabling modular scaling and faster responses

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

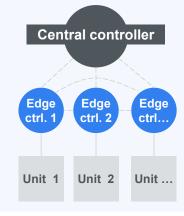
Distributed automation

What is distributed automation (vs. traditional centralised automation)?

Centralised automation

Central controller Unit 1 Unit 2 Unit ...

Model diagram


Description

- One central DCS controller monitors and executes actions for the whole line (centralised logic)
- Uses one vendor's stack, thus changes or add-ons usually require that vendor
- If the centre fails, most or all production may stop

Pros and cons

- + Established, simple architecture
- Single point of failure, where outages may ripple process-wide
- Slower to adapt, small process changes require central testing
- Difficult to scale and modernise due to vendor lock-in

Distributed automation

- Multiple smart edge controllers act locally with autonomy, reporting actions to the central controller (distributed intelligence)
- · Open, modular and scalable architecture
- Edge controllers stay coordinated in real-time via TSN/5G*
- Resilient by design, where faults are contained to a cell

- + Faster decision making, with edge controllers closer and more optimised to their respective units
- + Scales modularly
- + Faults stay local within edge controllers
- Higher upfront design and integration costs

Notes: * Time-synchronised network in 5G Source: L.E.K. research and analysis

<u>Case study:</u> Electric grid provider achieved cost-effective reduction in outage duration and frequency through implementation of distributed automation

Executive summary

Market and megatrends

Application case studies

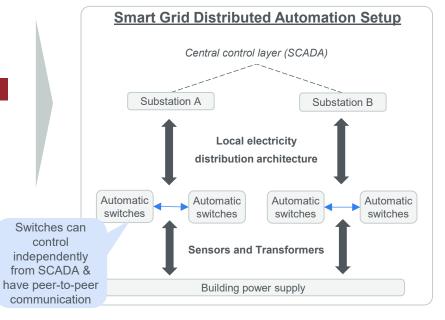
Profitability drivers and M&A

Distributed automation

Legacy automation setup

Industry Context

- An electricity provider aimed for rapid smart grid modernisation
- Acceleration from an expected 10+ year plan to less than 3 years
- Current existing fibre-optic communication network was leveraged to deploy distributed automation across the grid cost-effectively


Existing Technology Challenges

- Poor customer experience: Recurring power outages and long restoration times for domestic and commercial customers
- High cost: Manual control of switches increased crew overtime when restoring power
- Weak resilience: Severe weather caused prolonged outages across large customer segments

Distributed automation solution

Approach

- Deployed 1,400 automatic switches with the ability to control commands based on local conditions
- Automatic switches allowed local control and communication at edge of the network

Results

Technical Performance

- 40%+ reduction in outage duration*
- 50%+ reduction in outage frequency*
- 40,000+ outages avoided in a single severe event

Financial Impact

- \$27M annual customer interruption costs savings
- \$23M avoided costs in a major storm
- · ROI less than 2 years

Strategic Outcomes

- Foundation for distribution energy storage integration
- Strengthened relationship with department of energy and social benefit
- Improved resilience under severe weather

Note: *Over a 5-year period

Source: L.E.K. research and analysis; Industry Press, Energy Technologies Area Berkeley Lab

The distributed automation market is growing as plants pursue modular & resilient operations, creating M&A opportunities in Al-enabled edge control

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Distributed automation

How companies can invest behind the theme of distributed automation

Strong market growth unlocked by Al adoption

- The global distributed automation market* is set to rise from c.\$21.3B (2024) to c.\$45.0B (2030), with a c.13% CAGR
- Driven by the need for industrial process manufacturers to **modernise legacy control systems** and the **new capabilities of AI** to quickly analyse the large data inputs

Attractive distributed automation capabilities

- · Open architectures that rehaul legacy PLC/DCS to cloud analytics, enabling interoperability and faster deployment
- Al utilisation, integration of IoT and usage of cloud infrastructure to facilitate deployment of cutting-edge distributed automation

Attractive businesses have Al know-how, full stack offering and proven track record

- Offerings across the distributed automation stack including implementing controllers, connectivity software and data analysis
- Proven ability to modernise legacy plants and scale distributed architectures across multiple sectors
- · Healthy project bidding discipline with above-peer service margins

Ability to integrate automation platform into the wider OEM useful

Complement OEM and system integrator ecosystems, such as partnerships with OEMs (e.g., valve manufacturers) to implement directly into manufacturing process

Note: *Distributed automation market is not limited to process industries Source: L.E.K. research & analysis, Markets and Markets

Common themes and strengths in leading companies across segments of the process industry automation space

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Which ones make money and why?

Key megatrends: Process industry automation directly addresses several key megatrends that underpin structural growth and is evolving from a pure efficiency tool to an enabler of intelligent, resource-indulgent automated industrial processes. Technologically, rapid improvements in AI and digitalization are pushing the boundaries of what is possible, while geopolitical tensions and labour scarcity are shaping an increased local investment need.

Industry 4.0: Convergence of operational technology and IT allows for Al-driven data analytics and dynamic adjustments across all stages of production, allowing for digital optimisation of physical production processes (e.g., through digital twins).

Difficult to replicate technology: Innovation leaders understand how to integrate AI and machine learning into their own processes and create intellectual property, which allows them to protect their market position.

Data protection: Software-enabled/connected products are now table stakes, as highly sought-after solutions must also provide robust cybersecurity protocols to ensure data protection.

Global solutions/reshoring: Customers increasingly demand comprehensive, globally deployed solutions offering customers shorter lead times, enhanced quality control and greater reliability. Complexity can be kept at a minimum through identical or similar highly automated setups that can be managed with remote input.

Market growth: While North America remains the largest market, the Asia-Pacific region's share is growing most rapidly with projected CAGRs of 7%. North America and Europe are expected to grow at CAGRs of 5% and 6-7%, respectively.

c.\$160B+

Global process industry automation market by 2030F*

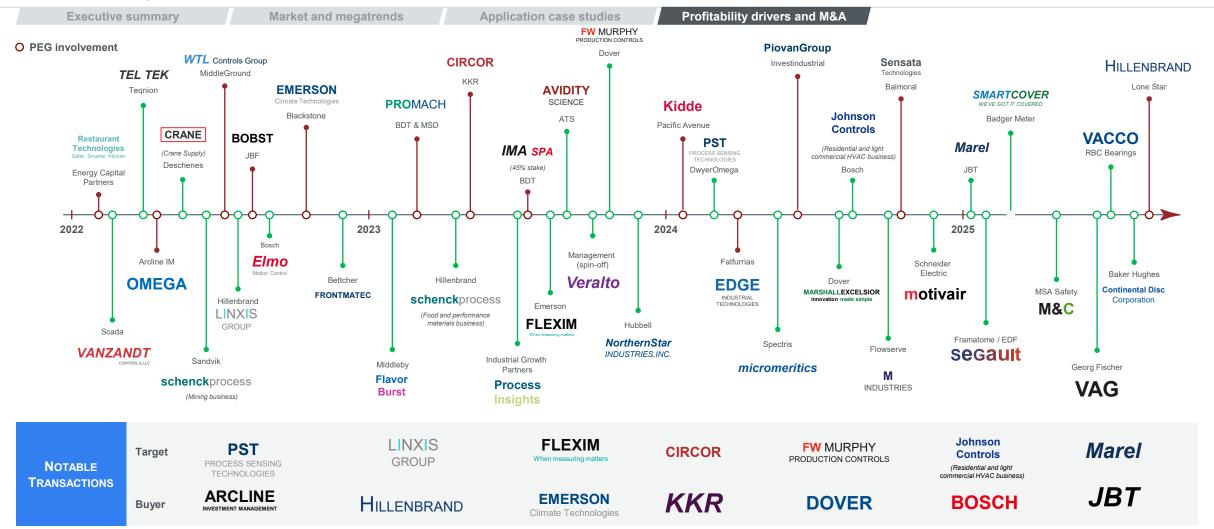
7%+

Global process industry automation market growth 2024A-2030F

c.50%

Manufacturing companies ranking process industry automation as top priority for tech investments

c.92%


Organisations planning to increase Al investments

Note: *Forecast period 2025-2030

Sources: Deloitte, Gartner, Global Market Insights, Grand View Research, HW Intelligence, NMSC, PwC, World Economic Forum, L.E.K. Consulting

Solid customer demand for process industry automation assets with resilient business models driving M&A activity across all industries

Increased M&A activity expected in process industry automation over the next 12-24 months

Executive summary

Market and megatrends

Application case studies

Profitability drivers and M&A

Strategic deals

M&A Trends

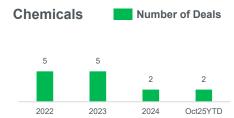
M&A volume stabilises: After normalising post-COVID to a resilient c.170-190 deals per year, deal flow is in line with 2024 and the year-end will determine whether activity will catch up with the higher activity in 2022-2023

Strategics hunt niche tech: Corporate M&A is focused on targeted acquisitions to fill technology gaps, particularly in robotics, machine vision and advanced sensors combined with exceptional margin profiles

Besides strategic investors, private equity is highly interested in this space, with around 40% of all transactions ending up with financial buyers this year, surpassing previous years' deal share

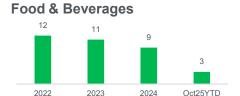
Focus shifts to "intelligent automation": Buyer priority has moved from basic digitisation to acquiring advanced capabilities in AI, predictive analytics, and IIoT

We expect an increased level of M&A activity in the process industry automation space over the next 12-24 months driven by increased OEM investments to complement corporate product portfolios and strengthen their positioning in key markets

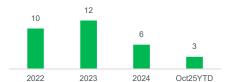


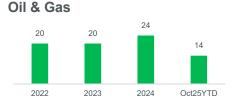
Strong 2026 M&A outlook: Activity is expected to remain high, driven by high investment interest in the sector, reshaping of corporate portfolios, and reshoring initiatives to counter geopolitical risk and build supply chain resilience, as well as accelerating industrial Al adoption

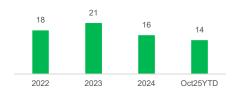
Private equity deals Mean: 14.6x 2023 2022 2024 Oct25YTD


EV / EBITDA

Median: 10.0x




Diversified & Others

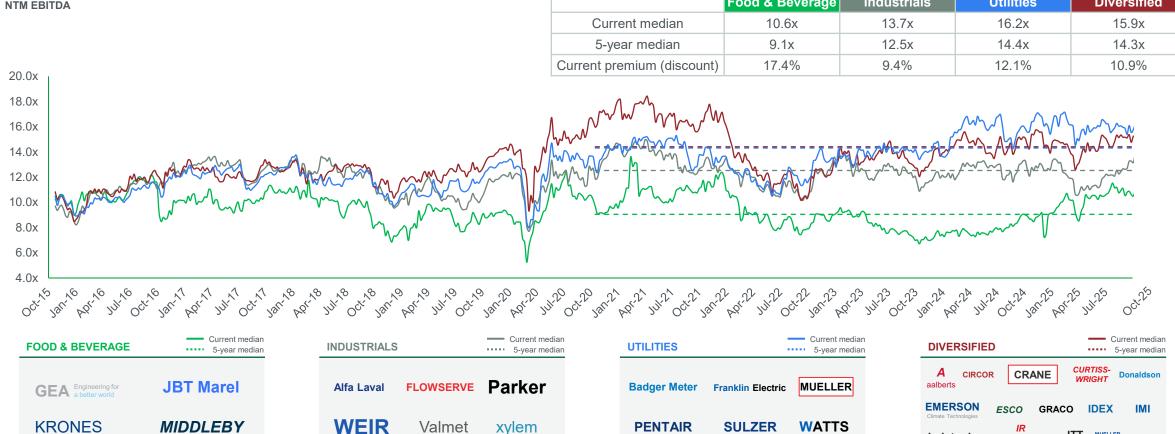


Healthcare & Pharma

Power Generation

2022

Notes: Announced deals until November 3, 2025, included; Diversified & Others includes transactions with targets focused on Metals & Mining sectors, as well as targets with diversified customer verticals Sources: HW Intelligence, Mergermarket


Over the past decade, valuation multiples for process industry automation companies have expanded, though a valuation gap has emerged between distinct peer groups within the sector

Executive summary Market and megatrends Application case studies Profitability drivers and M&A

PROCESS INDUSTRY AUTOMATION COMPANIES - PUBLIC COMPARABLE MARKET PERFORMANCE BY KEY CUSTOMER END-SEGMENT

NTM EBITDA

Food & Beverage Industrials Utilities Diversified

Notes: Industrials include end-markets such as Oil & Gas, Chemicals, Pulp & Paper, and Mining & Metals; Utilities include end-markets such as Power Generation, Water & HVAC Source: S&P Capital IQ as of November 3, 2025

Indutrade

Ingersoll Rand

Appendix – Glossary of key terms

Glossary

- Al Artificial Intelligence
- API Application Programming Interface
- AR Augmented Reality
- ARR Annual Recurring Revenue
- CapEx Capital Expenditure
- CAGR Compound Annual Growth Rate
- CHIPS Creating Helpful Incentives to Produce Semiconductors (U.S. Law Act)
- CPS Cyber-Physical Systems
- CSRD Corporate Sustainability Reporting Directive
- DCS Distributed Control System
- EBITDA Earnings Before Interest, Taxes, Depreciation, and Amortisation
- ERP Enterprise Resource Planning
- **ESG** Environmental, Social, and Governance
- ESRS European Sustainability Reporting Standards
- HVAC Heating, Ventilation, and Air Conditioning
- IEC International Electrotechnical Commission

- IIoT Industrial Internet of Things
- ISA International Society of Automation
- LDAR Leak Detection and Repair
- M&A Mergers and Acquisitions
- MES Manufacturing Execution System
- MRV Monitoring, Reporting, and Verification
- **OEE** Overall Equipment Effectiveness
- OEM Original Equipment Manufacturer
- **OT** Operational Technology
- PLC Return on Investment
- SaaS Software as a Service
- SCADA Supervisory Control and Data Acquisition
- SOP Standard Operating Procedure
- TSN Time-Sensitive Networking
- **VR** Virtual Reality

We span a global network of experts and look forward to connecting with you to share our experience in the industrial technology sector

Harris Williams – Important Disclosures

Harris Williams LLC is a registered broker-dealer and member of FINRA and SIPC. Harris Williams & Co. Ltd is a private limited company incorporated under English law with its registered office at 13th floor, One Angel Court, London EC2R 7HJ, UK, registered with the Registrar of Companies for England and Wales (registration number 07078852). Harris Williams & Co. Ltd is authorised and regulated by the Financial Conduct Authority, number 5408952. Harris Williams Private Capital Advisory Ltd. is an Appointed Representative of Sturgeon Ventures, LLP, which is authorised and regulated by the Financial Conduct Authority number 452811. Harris Williams & Co. Corporate Finance Advisors GmbH is registered in the commercial register of the local court of Frankfurt am Main, Germany, under HRB 107540. The registered address is 16th Floor, Marienturm, Taunusanlage 9-10 60329, Frankfurt am Main, Germany (email address: hwgermany@harriswilliams.com).

Geschäftsführer/Director: Paul Poggi, VAT No. DE321666994. Harris Williams ("HW") is a trade name under which Harris Williams LLC, Harris Williams & Co. Ltd, Harris Williams & Co. Corporate Finance Advisors GmbH, and Harris Williams Private Capital Advisory, Ltd conduct business.

Harris Williams Primary Fund Placement LLC ("HW PFP", f/d/b/a Aqueduct Capital Group, LLC) is a registered broker-dealer and member of FINRA and SIPC, and is an affiliate of The PNC Financial Services Group, Inc.

HW and HW PFP (the "Companies") are affiliates of The PNC Financial Services Group, Inc., which, together with its subsidiaries and affiliates and their agents (collectively, "PNC"), engages in a broad range of businesses. PNC may have had, and may currently or in the future have, business with or ownership in the Companies and its related persons, potential parties to the proposed transaction and their related persons, or their competitors, customers or suppliers. When the Companies are engaged to provide adviser services in a transaction, the Companies are acting only for their clients in connection with the proposed transaction.

HW PFP and HW are under common ownership of PNC. However, each of HW and HW PFP are separate registered broker-dealers and separate members of FINRA and SIPC.

The distribution of this document in certain jurisdictions may be restricted by law, and accordingly, recipients of this document that they are able to receive this document without contravention of any registration requirement or other legal restrictions in the jurisdictions in which they reside or in which they conduct business.

This document does not contain all the information needed to assess any transaction. You must conduct your own investigations and analyses. Neither HW nor HW PFP provides accounting, tax, investment, regulatory or legal advice to anyone. This document is for discussion purposes only and is not a recommendation, offer or solicitation for the purchase or sale of any security or an invitation or inducement to engage in any transaction or investment activity. To the extent HW and HW PFP obtained information in this document from third-party sources, neither HW nor HW PFP has independently verified such information and no obligation is undertaken to provide updated or additional information. No representation or warranty, expressed or implied, is made in relation to the fairness, accuracy, correctness or completeness of the information, opinions or conclusions expressed herein. All forward-looking statements herein involve assumptions and elements of subjective judgment and analysis and are not facts. Nothing in this document guarantees future results or performance.

This document is only being distributed to, and only made available to, and directed at: (a) persons who are outside the United Kingdom; (b) persons in the United Kingdom who have professional experience in matters relating to investments falling within Article 19(5) of the UK Financial Services and Markets Act 2000 (Financial Promotion) Order 2005, as amended (the "Order"); (c) high net worth entities and other persons to whom it may otherwise lawfully be communicated falling within Article 49(2)(a) and (d) of the Order; or (d) any other person to whom this document may otherwise lawfully be communicated or caused to be communicated (all such persons in (b) to (d) together being referred to as "Relevant Persons"). This document must not be acted on or relied on by persons who are not Relevant Persons. In the UK, any investment or investment activity to which this document relates is only available to, and will be engaged with, relevant persons.

For documents that pertain to a transaction or potential transaction:

All documents and information HW or HW PFP provide to prospective investors are for information only and may be used solely to evaluate a potential engagement and/or transaction. By accepting this document, you agree that, unless provided in a confidentiality agreement between you and HW and/or HW PFP or permitted by applicable law, you will: (i) not, and will not allow any person acting on your behalf to, disclose, reproduce or distribute any of this document without the Companies' prior written consent; (ii) keep, and cause anyone acting on your behalf to keep, confidential all non-public information in this document; (iii) use this document only for evaluating a potential engagement and/or transaction; and (iv) upon request by HWand/or HW PFP, return all materials from HW or HW PFP and destroy all documents containing information from those materials.

None of HW or HW PFP, nor any of their respective affiliates, equity holders, directors, officers, managers, employees, contractors, advisors, representatives or agents (the "Protected Persons"), represent or warrant as to the reasonableness or probability of any forward-looking statements made by any Protected Person. No potential investor should rely on them. To the greatest extent permitted by law, the Protected Persons shall have no liability for any information, opinions or conclusions expressed herein, any forward-looking statements or assumptions on which they are based, or errors in or omissions from this document.

L.E.K. Consulting Disclaimer

This document is to provide information and is for illustration purposes only. Accordingly, it must be considered in the context and purpose for which it has been prepared and kept confidential.

It cannot be relied upon by any recipient. In accepting this document you agree that L.E.K., its affiliates, members, directors, officers, employees and agents neither owe nor accept any duty or responsibility or liability to you or any third party, whether in contract, tort (including negligence) or breach statutory duty or otherwise, howsoever arising, in connection with or arising from this presentation or the use you or any third party make of it.

L.E.K. shall not be liable to you or any third party in respect of any loss, damage or expense of whatsoever nature which is caused by your or any third party's reliance or for any use you or any third party may choose to make of the presentation which you accept is at your or their own risk.

