

Diagnostics Industry 2025 and Beyond in Asia

Digital transformation of the laboratory

January 2023

These materials are intended to supplement a discussion with L.E.K. Consulting. These perspectives will, therefore, only be meaningful to those in attendance. The contents of the materials are confidential and subject to obligations of nondisclosure. Your attention is drawn to the full disclaimer contained in this document. This document is to provide information and is for illustration purposes only. Accordingly, it must be considered in the context and purpose for which it has been prepared and be kept confidential.

It cannot be relied upon by any recipient. In accepting this document, you agree that *L.E.K. Consulting Pte. Ltd.* and its affiliates, members, directors, officers, employees and agents (collectively "L.E.K.") neither owe nor accept any duty or responsibility or liability to you or any third party, whether in contract, tort (including negligence) or breach of statutory duty or otherwise, howsoever arising, in connection with or arising from this presentation or the use you or any third party make of it.

L.E.K. shall not be liable to you or any third party in respect of any loss, damage or expense of whatsoever nature which is caused by your or any third party's reliance or for any use you or any third party may choose to make of the presentation, which you accept is at your or their own risk.

This presentation is based on information available at the time this presentation was prepared and on certain assumptions, including, but not limited to, assumptions regarding future events, developments and uncertainties, and contains "forward-looking statements" (statements that may include, without limitation, statements about projected market opportunities, strategies, competition, expected activities and expenditures, and at times may be identified by the use of words such as "may", "could", "should", "project", "believe", "anticipate", "expect", "plan", "estimate", "forecast", "potential", "intend", "continue" and variations of these words or comparable words).

L.E.K. is not able to predict future events, developments and uncertainties. Consequently, any of the forward-looking statements contained in this presentation may prove to be incorrect or incomplete, and actual results could differ materially from those projected or estimated in this presentation. L.E.K. undertakes no obligation to update any forward-looking statements for revisions or changes after the date of this presentation, and L.E.K. makes no representation or warranty that any of the projections or estimates in this presentation will be realized. Nothing contained herein is, or should be relied upon as, a promise or representation as to the future.

Process inefficiencies are a key bottleneck for labs today; it is believed that up to 70% of lab workers' time is wasted performing administrative tasks, doing preparation work, cleaning data and reporting

Key challenges in labs today

Lack of automation

• The majority of lab processes, including sample preparation, processing and analysis, are currently run manually with minimal automation, especially at the sample prep step

Fragmented data capture

• Data is often captured at multiple instrument locations, often in different parts of the lab ecosystem, complicating data capture and retrieval

Lack of data standardization/inter-compatibility

• Data storage, analysis and reporting are highly fragmented due to varied file formats, coding challenges and a lack of unified reporting tools

Administrative inefficiencies

• Test ordering and reporting, procurement, inventory tracking, and day-to-day management are largely done manually with significant room for optimization

Source: L.E.K. research and analysis

The lab of the future is envisioned to be a highly automated data-enabled service organization supplying consumers/patients, healthcare providers or other stakeholders directly

Digital workflows in the lab, relying on process automation, support of data analysis through AI and predictive maintenance, are key drivers of efficiency and the reduction of diagnostic errors

	Sample collection and preparation	Sample processing and data compilation	Result aggregation and analysis	Report creation						
	Predictive maintenance									
Physical workflow	Collection of samples	Processing of samples according to scope of analysis	Aggregation of sample data results and handling of OOS/OOL/OOC	Creation of analytical report						
	Preparation of samples and pretreatment	Compilation of sample raw data	Processing and interpretation of sample data, incl. metadata capture (e.g., CAPA)	Material/batch usage decision base on analytical result						
Digital workflow	Sample barcoding for further track and trace	Guided operations support via AR/VR/handheld devices and digital SOPs	Electronic transfer of result data into ELN/LIMS	Creation of analytical report (e.g., certificate of analysis)						
	Recognition of samples and related testing scope	Collection of analytical raw data and data integration of raw data into ELN/LIMS	Support of data analysis through Al	Interfacing of usage decision and wider operations system						
	Automated sample allocation to lab areas and respective teams/staff		Support of OOS/OOL/OOC handling and automatic integration of metadata							
ource: I F K res	earch and analysis	Key drivers of efficiency	y in the lab Key drivers of reduction of	diagnostic errors						

Solution providers are developing enablers to streamline and accelerate the lab workflow

LEN

Source: Company website, L.E.K. prior experience

Automation, digitalization and applying AI concepts will help address significant optimization opportunities across the lab

Workflow digitalization and automation cut across all diagnostic areas, with a substantial reduction in processing time (up to 50%)

Lab best practice			Sample arrival at lab	Sample processing and preparation	Diagnostic tests	Data analysis and interpretation	Report creation and sharing of guidance		Industry standard	Time saving of best practice
Phenotyping	Cytomor- phology	Autom.	+	+	++		+		12 hours	25%
		AI			+	+				
	Immuno- phenotyping	Autom.	+	+	++	+	+	10 hours	10 hours	50%
		AI			++	+	+		To Hours	
Genotyping	Chromosome analysis	Autom.	+	+	++	+	+	3/1-82 hc	34-82 hours	20%
		AI			++	+			5 4 -02 110013	2070
	FISH	Autom.	+	+	+	+	+		34-82 hours	10%
		AI								
	PCR	Autom.	+	++	++	++	+		6 hours	30%
		AI								
	NGS	Autom.	+	++	++	++	+		14 hours	30%
		AI			++	++				
Note: E Source 8	Benchmarks referring to curr :: L.E.K. research and analy	ent standard lab witl sis	h average level of digital ma	aturity			Low impact or n/a High impact		Medium impact	LEK

Looking into the future, a fully digitalized lab workflow could enable usage of disruptive technologies, with additional efficiency gains anticipated

augmented reality solutions

that can capture and share 3D

under development

models, with further applications

Roche focus on integration of

Siemens provides **connectivity solutions** for medical devices

instruments in development;

- Example
- development for wide adoption of digital specimen

storage of digital samples is in

Source: Company websites; Omnia Health; MLO; Graves et al.; L.E.K. research and analysis

The start-up LabTwin developed an assistant that uses **voice recognition** for data capture during experiments

Challenges in healthcare talent retention and the rising cost of medical resources in APAC are expected to be key contributors to the acceleration of the lab digitalization process

SE Asia healthcare and life sciences employees intend to resign (2022)

Percentage of respondents*

Example: Indonesia salary annual increase (2021) Percentage of respondents

Note: *Survey question: As a healthcare professionals, do you plan to resign in 2022?

Source: Michael Page Talent Trends 2022 The great X report, LinkedIn 2022 Global Talent Trends, L.E.K. research and analysis

LEK

Lab digitalization, and in particular the accumulation of data, also opens up the creation of new monetization opportunities, although regulatory and ethical challenges remain

In terms of engagement, laboratories' needs and preferences continue to evolve; principals and distributors need to adapt their engagement model to create a distinct purpose for interactions

COVID-19 has catalyzed digital engagement and increased adoption and acceptance for remote and digital tools

NON-EXHAUSTIVE

F

Source: L.E.K. research and analysis

Connect with L.E.K.

